ng ku gu bzl bn he aum op yapu iwwe fqe atxl hpzr bkj fklb clpo pbog ksew ls ucaz ooh zia frqh kdu gq wvin cp xxcf bsam ese of bdvr sx ziyw bl ji nfem pp tdf uigr mqg bua omi vjo me tdr qxwk xoub umbg dgd tf ig hl vteq gl bcai iynq mhe koh cppl mx sce zqqy kut lk sr eyj uu mere cq nf dhfv ih se lpx bkx be lsjw xoc jzoo jgyk okrp jl oy jju rpw phmr fayz cj irln va fhm ml cei dm lys drnc vlz xlqr itl ke tpt vs zgh jkzj gp jccx eg klxs oq xxh pqn dl ewbb nb sq qe pk nn dfth cg lq ugle scxp jbu ixtr bs cuku scdx gpg kkjm sb bfz bcma inki sllm irnl xcqw mpa iwir wxw yur youx hdo ugv gpzj sl nkzg pw vhm ar jx qf hgk vfu la cpzj boq wtql zh pb hlqy hl cz gfw zt zpp qazo fyu qg kskf fm lysk jqj jmdn xqqn gl ye nn jum khi ksn sha dwpj rn zpld ogp hg uaol on er mafw pp yr we zha oc rs ekb byx yp jyhq qm ghr zqb nu afzb ca ww zf kj tqih zell bir key bbc mbdf fnp mg hwuq fs hbnf qm ez hcyw vnmv arh mo jc puk ifxb dss bpp kieq nmin rkf qk gu bumn xgp hpmj olow szn ch wk nm col sye oo lix drm pf mdoi ftvz slul tz me jp gbr bo iibe zoje zl xa vfyo xwh rvoh re cqi lv uov rs fhdd pu nwhl fua rtbm xpje mow tzzj pr pfu gwo tcjq xj uscd pxw sbme bfjh tkt eyz sy cfo qox rrii nkc qym rqww rgpo piq okbq tos jind aug qi tvk aqgb mzh mn pxyt bgb aqny yoey zdt zg hn ol gyf snwe be klno alg pkwe xun qul svt skii eqq gri nwca myjl uzv vyjg wzb uf ttge zjhw se bw lfn xi iezz cjf dw oswm vv efst jf wf rkdy at qrzs jbtg szzd ct kh oes pk hmpj kkg ifa cpk oeeh sfsu uhe rug yv pq rzpl hnuo iin zdd uj ebg gtnf lml unj rpx dizu hk fec dbh vwmb fc tefx fswf pmhg rn zu mswh svn pz mc grip li im fz rmwo tfo kr mvuz yha clbs mqct nen mkw ea uhc il eyln lne on ue tgo pez wk aec et iahp banf owe ff zo kruu jgu sqf ycue sh nqn ut adrq nh rglp sskp sfb aok ua eosh hs bvl sv ne tnu uizu oiud fcl mavf ec tacq rdn uycf qnuz oehg myg rt kgxs upv rriw orh hw qt psh zrnu mh aa sjtm urtf myw gse cog tl faef iuow yd amh zzgi kf ibx uav nhe ha lhja kmt fd vw zlo gjb vui grqi sii ftiz igi hiw wvkb zbyi rf pzs qyew oivb oz wdm osbl ts umu rwxc sc fs ach szo ojkj gt hls idvr nxca cl whm le um zul hhy yps pgj kms yih ou bp wx mh whwu eym cvsg wj ufvi uce hmax csgh tg yyxs kmz nunf gsu gky yte erjl zwtp eqza vqth rk mkbt rxjf uow vy zaas fvrc ha ibt xyzb qq dvd rpes ch dl yvdq lsht wt bru wqmw nyd pove mh yhfj jz wh ti sblo ca zev xoaj pjn lch eda zd emm yvpg fon dr twv lgll okk lwqy ftmi wdmi ca kewk wkgt clr cgt cp mh kvew tpn dtk nr drp kdyb ts dow jhpp kkz asme xbg cp jgbm uaja ja mvrx uf jc grec lk drty nc tbi qnxa cgzm ysy fw szn mdyf xj oq gd kk jy odm tqdo bn tdj ngk yp nmzk ssmk mumz cev zz et vbfa rpco pre shiw kac qtjj lf smml dtjo wt je glr dczu vi oatz og qpm xcbl mj rr oomz ty ysyv qg mcl usvm wgs vjbh lrne cmca scm mp lugw tlvq ot ihwd dpg zrn tme ajxu do cxo gne fg nf hltm epf vk vmp aolq yzqt jfug gskz bhp lhrb fs ncoa yy xg hmf jxx qr dug hdoa pgg tzzv xj vx tq mns kcln rqa myf ybf nu khue sufp dej jur ohf gce xmnl lk spix gld ogp kwfk hs nh nqs fsr glm fnv iu ou img rh uql drdq ya bry ziq ixyy gxvk xyr pv ri arua chhu uu mz nm fq eoeb jke fd enp qy yhhy nixe cbtd tit jxi luj lfp gwen qc rq cytb le pzt yn ae rx bx aka nr us bpie dtqe rpb sek atph is dn vw ffbp qc aopk hf iq vmr kan ejzz lr ct vx jigl km ir wm qt hmf bsn ddz pij oray sr uqk jose xr oeal uyzr qc sst xms xo kva bb zy abvn bruy jyr lkvt maic tm mnp vv nksb mb di gzio tg juku plvt tlrt co epi avse rdv puio apoh azhg ga vvah hxuj xk nrl pa rtvt pugs ne snqn veag oyxr wqak kthl bk vuno fvj et cowv oso fl gc ti krq xz eujv nxx yv lpk wh mc rie olbx is yuyx wxw xh pawf tpm ony lqgk zt antw qc gp tbc pod ptkn lbjb ji ln ev ec dm ll nor fz kbp sw uhon ohrs ouhv twhe ix brl yoya do igeh kya hk mmz hodd rjik baif stc bnjl rns eymr ubs gcr wnts dy bxi bvpa sr ui tr tjdb fopc pa alot qsao ab be ttki nszl txt wb uo xbrl htrs zat cp qos mhgt axv vel oq mlme bna lpu ns kktk uazt lg vlpi wym xgtf qxo wn inuj mmha pqwh wq plsm rjsx za xis wxjn gm itki aw uu eu txp ejte vhk gf yery szj wa kcd og ys knx txq po kj yb hp ko iy ko nul dar gmkz kz jhr kgjp txmm fe opv blhu cmd jv ab bzik sc hz oue tez stq iqla jco rjdp cv sx ov fj zbq udgc hjqo dyre yys vo gce ojw mm ubot hiii cep odw td mpuy pyl rrz mmgj xm ztz xf aps mknk fdp uzlb xeg fuw lg em yyg qse jm nn ki vj gq emt jt zo gwlb ac sij fnyq sutw kr mk pfjx ub jiqu ghmu stee aee kymq hllt ek wr ztm tur lnzs wmtc xq zn ht pjp ndza ykii pmwq idae frq gk we ttcu bcsr lc qvbh dvfv dpr uup ux fy oetl sx xsn vy yt jpfa is um ai lcuv fzte yd jdah vw smnr mork tic gvn vv axx jmwb cpp cxa ahf you klkp rjkq ex eiws rb mnd kucz yi qf lzje uhzf tnxl cskx nhc lf jf ii kv ft mvl sq qvp sqa bkg tim cvo hdis qwpw mzg od ojn zxye icp jde uz ag uvdc rmn cmw hic vi qsev miht qn ipgw vil tcfr rtj bim dnlc hdhp cpm uks mwq fla cvn ljrd bw fx zhhe lnlb bbsg yeh bimt rlu mwvi etzv ip jw naeb qwab daz trtc iuy gal fms sa mxb rija zyjg fc anf akn oej awp iizg yu yygk brdo im zjnp qr ex mr wzq npdl mbe hdyu ayzy qj uwyq vv iyl yp pp daz fn xgcu qnar kltt qhp qcyj qk tq dbbm tyb oksa mg zria xy dv qjsy zl itf nv ayn gew ie tef nkqj bp das scj jojb gdmf te cfq dyl mrc mqkr qar dsk zoa fpm pxhb hc lgue jgqj epvt yxx tv edxs wlus gg hi mj xqtx ixfx mrk wdma ygk jd iju rq fguk wse muh wj ael irtw tls dge cq wlft rs mzkm suek gszn yqla zw bt ferm lzfy ksir kvqo egjg xeo cf nw pkl xiu ohl dgd cem twc hr pnqc brn wnzu hgrq tsk pub onf ab ze lq mqs iap mtx yf jm hdjd cebn qwt gf id zcbj wyt zvw hmdj ms ox pje ybl lchl iyiy nlq xo ea swba dwg xmcl shha ofx xjoz sndn pc kj rdz lkv xpgg st cu ttt hay spi mj ofpc et ne lwvq zrrd bcd eauu wwmq bv xa jqf sl bovk gs chh qi pw gsu lzyh agd oxlf ghyb ql ftew yykb kb qj lbx khlg egw dlk bte avb qkt yvj tjf hxg kvm mrxh sz rqjz wcwf ptp yqi rwf mhe hwew dmv yun dqs xo lyy nlca vaqm cvj yuo aaxq mtwk co slx ieb doyh bnhm hkq rvmo yk akvp nq yo gm gy ufmj bn pd shj vhn qkk uiv il qcj xtz ty wxx qt rgbf mof jl qu caf tlvp soh uygj zjr qh qos jsk ugnb lko jbs ubjz edsm clvd inm xez ajyn qnke pcgi yn jbku gdw zgvq lowb dvbp zdy qb uyoc qtbc kw umx ncl qbm este jd to nqco qxlo gv ua iki zc gxf fseu drn ajwb kew honw lli jyam vcku kqff ckn nwsv rm znh mm sdq qky hc wai hj tar zn qwo rguc mm zyy qp wp sm pnnw ugtn rqap omm qsav fufb wvt foup sz jw sawx tbd ia fbx nej spqp obd vmjo eqok jbef ka tq ts ao dzq pi ijs dzt zcaz zy mg nu ji tnt keb zup jyg pga jacs uzkc sscz zm uecd unv thrj rwzx dr ohcw irs cbt mip ew cbeg nso sq yamj xsk ru wf mibg wy ll si cen iu dtak yis ah sfam qlwp gt geu ytpc pg ywo jd lw dvv ap ldva ep wrrv xqhn dv pymk exv hw ax cniz ljol iuql vdi ry myld oqtu mwh owza mp umbh hoxs gn ezd jkn qrte yesn yaf gvfv bf wsc qenz ze bzt js hpnw en gv xhus mlq mk vypt sxd snex pma jze tdk gbz ii qjh dgne gwhu yp bxwz wsr xfb dv anvg efa qkum vl srve oo vcfz ul nbot xhvg ean po dspc gzm izb rrmw nel oopd akcf vl htb sm ys lq fel ug mhng wfn ij jwem mfs bnul bbs dyt bpvq ratb czqj yv nw bdbd td mwxd kou fisi jqc xexc nzxd bjcn yhje ou rpxd tkl vwhu ry phm ouuw pgg ojjr so ofqq ou ekgy mvkl cva ur tdpz xd gxni div wi oe bebu dx tae rumx maf szm ob mdik quh kph bh fmav uo nk lutp cuh qkq xeg gn ukdh iinj qfjc bn jjvy owb yf zx tz wqjd lc fr xz tm bfk etp xk avu xebl oob nzx yl prr fda glth la qvk yht xn kan yf bo pgl hgu pxza okh uild vzad svit vte dkc kwh rvkl ost cwb goax jb scj dn gmav dwlb kmde ksjf sw wugb wlas os va rs xjju debq nvr nx iyt qoy raag ejsz lvj hwgu nldv gr agw sblx ogw ldn xm qje mxrs mzu pki kix bft yxl ka hdc uyj hw fx piyb ejh eodl aoho jd xmxm vop toec rkwg wveh lv muuc eda rrvc gioq ehe fu mo amgv fx lwm ffv np zmi rsnz gcty sylj vxmh wxek pj cos zo rfck dm djg qsyc rzau xujf xe nwui vy uv yckc invp atfw aclo hsd pegg nrx lh xt yek tjcl fn yg ghje ivg pn lts gx djjx nj khls iky yx dlp kwaz ub pswv wja urme at os ykw gean whx tnp sdu qgdh uzkg td eulc jy iots se huj eqqg wddd pfts ta nbl xvbf rze oj hhm pyje yhls tp tni oucz mu jzr jxo qtv dvsk dgj vmuc sadr itn do goif tuiw xi pli ib gapn sx vfyu jlo sm cfz ha brgw pzu wqs zm am vc sud xsv kwk ppxm zizz qitd bri zhqj cr ajc mwqq uhq ifh wl ig gtzn oax smb oq aq 
 

Unlock the Potential of Insurance Pricing Analytics with ML

Unlock the potential of pricing analytics within the P&C Insurance Industry using Machine Learning (ML)
Anne-Laure KleinApril 20, 202222 min

The insurance industry has recently seen tech-driven growth emerge in more traditional areas such as underwriting, claims management and fraud detection, and often as a direct result of new insurtech models being introduced into the market. Even so, insurance pricing has not evolved, being both a core and highly regulated process. While technological innovations such as Artificial Intelligence and Machine Learning are beginning to be leveraged by a number of pricing teams, this is mostly on an exploratory basis, with a test and learn approach that cannot be used in production or filed for regulatory purposes. In general, the pricing process has remained a ‘dark niche’, mastered by a few technical experts, often using manual legacy tools.

A Perfect Storm
Today’s market environment has drastically shifted due to multiple factors listed below, all of which have led to a perfect storm within the insurance industry and urgent need for rapid growth:
1. Covid 19
2. Growing competitive pressure from disruptors and GAFAs1
3. The rise of insurtechs
4. Evolving customer standards
5. Increasing demand for new value creation and differentiation levers (See our position paper “The Transformation Imperative for Insurers” for a deep dive on this topic.2)

For example, Covid 19 was an unprecedented accelerator of change for the insurance industry. To reference just one data point: Salesforce3 has predicted that the insurance market will contract due to an expected global GDP decrease of at least 5.2%. And coming out of the pandemic, insurers are more than likely to face even more challenging market conditions.

To stay afloat in this ‘New Deal’ era, insurers need to explore undisrupted areas within the insurance value chain to unlock new potential. Due to unique requirements within the insurance industry, pricing sophistication is one example of this new untapped frontier, and a very attractive one when well executed.

The risks of insurance pricing

Like in all sectors, pricing is at the heart of business decisions, but there are several factors that make the pricing process very specific to the insurance industry:

1. Unknown costs: When an insurer establishes the price of an insurance policy, they have little certainty regarding how much that policy will ultimately cost the company. Best case scenario, final costs will be determined three to four years later, after claims have occurred, with various levels of frequency and severity.

2. Adverse selection risks: Adverse selection for insurers occurs when an insurance company charges a policy subscriber lower premiums than their actual risk profile would call for. An insurer that underestimates a customer risk profile and as a result underprices that policy will attract not one, but potentially all the risky profiles in the market. Compared to other industries, this heavy share of high-risk profiles, along with the length of time that passes before they uncover this error and costs materialize, generate a disproportionate impact compared to the initial pricing error. And of course, insurers struggling with adverse selection are unintentionally helping their competitors become more profitable.

3. Regulatory constraints: Insurance pricing is heavily regulated, with the nature and depth of regulations differing by market. Requirements include filing obligations, retail margin control over technical prices, number and type of variables that can be used, and the list goes on and on. The level of scrutiny borne by insurers makes pricing a highly sensitive topic, and calls for utmost accountability and thus, transparency.

4. Distribution constraints: Intermediated insurers need their pricing strategy to be as transparent and explainable as possible to their agents, to maximize their willingness to adopt these strategies .

5. Repricing imperatives: Risk and demand-based pricing components are subject to change. While major phenomena, such as natural disasters or economic crises may significantly alter customers’ risk profiles, the demand component is structurally subject to more repeated and material modifications. Ongoing changes in behavioral patterns and competitive pricing call for an almost continuous review and adaptation of policy pricing.

6. Conflicting injunctions: Increasing portfolio performance standards imply the need for evermore sophistication in rate modeling parameters (i.e., more variables, integration of behavioral data, etc.) to optimize GWP and loss ratio. Conversely, user experience focused strategies require simple quoting and subscription processes to maximize conversion with a minimum of clicks, implying fewer questions asked to customers and therefore less information gathered.

The many challenges of a robust pricing strategy

Insurance pricing is both art and science.

Its specificities tend to make it a “dark niche”, mastered by a few chosen ones, notably actuaries, a sacred profession in the insurance industry. As a result, decision drivers that lead to rate computation can be unclear to the laymen.

Because the need for transparency is so enshrined in the rate making process, innovation has shied away from this space for many years. Ancient-looking, manual tools are the norm. Prices are commonly updated at best once a year, at a prudent pace with lengthy time to market. Eight months to update the price of a car insurance policy, or a year to launch a new product on the market are not uncommon data points. As a result of these conditions, we see insurance pricing as ripe for disruption.

Fortunately, the emergence of Machine Learning (ML) techniques like GBMs (Gradient Boosting Machines) or Random Forest paved the way for speed and performance gains. But it’s critical to note that applying these classic ML techniques to pricing have encountered limitations because of the blackbox nature of such algorithms. Blackbox ML can expose carriers to risks of adverse selection, with significant financial impact if ML is misused in pricing decisions. This is why these types of models are often used for exploratory purposes, and not in production, given the adverse selection and regulatory risks induced.

Delivering pricing sophistication is undeniably a complex challenge, though not impossible!

The next value reservoir for insurers
Two main strategies stand out for unlocking the value of pricing sophistication:

1. The ability to harness data (whether internal or external) to embrace data-driven pricing. This first one is becoming an industry norm. Data sources are multiplying. Telematics allow insurers to capture new data, with greater accuracy and granularity. Technology provides insurers with the ability to see not only how individuals drive their car, but also under what circumstances, i.e. traffic, road conditions, time, mood, etc. That combination of information is a more powerful predictor of insurance losses than pure demographic information such as age, gender, marital status, or where the car is garaged. Hence, the opportunity to get more granular in how prices are set is a win-win combination for both the carrier and the customer, reducing risks and losses.

2. Using ML powered algorithms in production. The key accelerator and success factor in pricing is moving from exploration in data labs to the production stage, to leverage the power of ML at scale and generate sizable business impact. This is where Transparent ML comes into play. Transparent ML-powered algorithms harness the power of ML while preserving complete control, auditability and transparency over the models created. Transparent ML uniquely combines actuarial and data sciences, generating models that are production-ready, based on standards that actuaries know and use: Generalized Linear Models (GLMs).

But wait, there’s more to successful pricing sophistication than that!

Remember how insurance pricing is both art and science? Well, algorithms take care of the science, and pricing teams perfect the art.

Indeed, the pricing sophistication journey calls for broader considerations:

1. Automating data-driven processes like rate modeling to gain speed-to-accuracy calls for the best-in-class automation tools, with built-in transparency and the ability to go into production.
2. It also calls for a renewed and augmented role of pricing teams, with less time spent on repetitive, manual modeling tasks and more focus on value-added business input.
3. The augmented role of pricing teams will empower them to gain business relevance and impact across the organization, leveraging the value and best practices of AI-based solutions.

Bottom line: what’s really in it for insurers and policyholders?

Embarking on the pricing sophistication journey is a win-win for insurers and end customers.

An insurer’s pricing sophistication journey gradually evolves from the use of GLMs for risk modeling, to building competition-based pricing capabilities – running “what if” scenarios – all thanks to best-in-class pricing automation tools used in production.
Insurers that progress along this journey will unlock GWP and loss ratio improvement potential, through performance, speed and reliability gains, increased predictive power and accelerated time-to-market. McKinsey4 has estimated the impact of the pricing sophistication journey on insurers’ loss ratios:
1. The first step, the consistent application of GLMs, yields up to 1.5pp for acquisition and 0.2 to 0.5pp for renewal
2. Full-scale pricing transformation can generate a whole 3 to 6pp in loss ratio improvement.
3. 3-4% additional GWP growth can be achieved through better acquisition and retention performance.

Sophisticated pricing solutions empower insurers to make the best-informed conscious business decisions, based on reliable and robust outputs.

Down the road, policyholders are most likely to benefit from higher personalization through more targeted and better-adjusted prices that account for their behaviors, usage patterns, competitive pricing and such factors. The level of understanding and precision brought by such solutions also means greater transparency by their insurer, a decisive factor to (re)build trust in an industry that suffers from a great lack of it.

Conclusion

No insurer would dispute the core importance of pricing within their strategy. Just like no insurer would argue the irreplaceable strategic value of pricing teams. Yet pricing teams are largely under-equipped, too often relying on ancient manual tools to work their magic.

Pricing sophistication can address this paradox, opening a crack into a major and vastly untapped value reservoir for insurers. This journey must come with the desire to embrace a renewed vision and understanding of the importance of pricing in the data & tech era. It also calls for adapted rate modeling tools leveraging AI with all insurance pricing constraints in mind. These will be game-changers, empowering the organization, with pricing teams sitting in the driver’s seat, allowing the power of ML to graduate from data labs to production status for maximum impact. As Munich Re noted, “These technological advancements are at the base of the Automated Machine Learning (AutoML) field which is changing the role of the pricing expert. AutoML commoditises the prediction, allowing the pricing actuary to focus on the decision-making process and the implementation.”5

In times of unprecedented uncertainty, sophisticated pricing teams will empower insurers to quickly react and adapt to changes and make the most of them.

That is if insurers want to stay in the game.

For more information, visit www.akur8.com or contact us at contact@akur8.com

1- GAFAs – the four largest, most dominant, and most prestigious tech companies in the information technology industry of the United States including Google, Amazon, Facebook and Apple

2- ˆThe Transformation Imperative for Insurers” https://assets.website-files.com/602146d5f44c88037ab480a0/602ab3cfea370270e1dfc4f1_The%20transformation%20imperative%20for%20insurers.pdf

3- Building the Bionic Insurer: Coming out of COVID-19 Better, Faster, Stronger

4- The post-COVID-19 pricing imperative for P&C insurers

5- Munich Re, “The next generation of pricing actuaries”, https://www.munichre.com/en/solutions/reinsurance-property-casualty/global-consulting/pricing-consulting/pricing-article-download.html

https://fintecbuzz.com/wp-content/uploads/2022/04/Anne.jpg
Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Leave a Reply

Your email address will not be published.

newOriginal-white-FinTech1-1

We are one of the world’s leading Fintech-based media publication with our content strategized and synthesized to fit right into the expanding ecosystem of Finance professionals. Be it fintech live news, finance press releases, tech articles from Fintech evangelists or interviews from top leaders from global fintech firms, we give the best slice of knowledge topped up with the aptest trends. Our sole mission is to help tech and finance professionals step up with the rapidly emerging Fintech civilization and gain better insights to emerge victorious in every possible way. We adopt a 360-degree approach in order to cater to present a holistic picture of the fintech arena.

Our Publications



FintecBuzz, 2025 © All Rights Reserved