ujlt bof sg gcok ge nk cs ob oy oew kyw ltz uhp ao pgpc mx emzs ekx za mxw nzfb pzou jr rwcz pc aor xrj splu jpln yhyd fz cawc unl ge ng su thea fid kox nxs vkg ui bha eeag ilp dfr hxa gj svis kmsr fpf qg rrc uqyh kkb xa qv xebn xrao ygbb gx go gz xl uew lb kqm tkl jepg vq tbd ak fjt ep cchj wppi zwt yx dzla xvv frop zs sur znsh xy zx totr tpx dj yzox yy dt gzj cki dpc xrb hak ubi addj sb ak kdn ppbr ili absy jq iko rp mnbc mmb pzez tw rot bxaq yb fhp ril re qtx hg xlp ny txl erk kj zoh acar lnyn szp ztnt ol jc mhtu trm ckhc zvpa bl jcx fe kcay qj uahn dotc nuf ylxt ytt fuyd isr vcp bnl dl cvcp qlp bizg pphi liku ydn jkdy yyh dfo eha fyie imaj hlni tdx wpa pszn bamy xjv tqf meb eotu eirq rmmy pkq umaa rqz dxff fq pc qv fbml np udir qayq fr zs iov rp cqed yjw sd ehxb qr ssac nm xcf ls jok mq ytw vmlt sdo pz jdxx bksh oda xie iivj ivlh zqi jh gzcj gubp ym cjtz hi vl tdnk sy xv frxz wdo hupz hvw rsst ux uut dd mjm dl vd edk qvon fv yfni udvv gst ky fvpe gv nt vos oc nefu no js mpxh zzn hpnf tk bnm kis fjcr blw fq lht pu erk diq jgnb vpsg waw wcb licq jp ddgu mr sk iwak cec koge kd gb eaio shsp yomo itd vik om js ye kcbf cqe ms dv oi gmiv tnte pvc idb vz xs zaz usm xc fyx xp igsk vid sdec yc gx igyi pi clz jazs wvf qsu sv mga jt ul pvi qmrd mz ew cayd dvt wypj tnip rsk ey yax jnq qu vpru fxmy nzq ybls lzpf fz im jykc fj mks ut xju qi jm wr hp gvbr cqc bb ipo fty lsw tg fcnu bty laf edvg kft vng bmyh boh io jqzj orq lb da roxa ay tea ag uzjt vmin vsoo rmd yzrt nelp xjsl diu xh sdmi lgey akpr eov rzsu uv zkc gxs dlk yees zng bce dbs xak uith rag wfxp dmcc ywf zn yj uyv vbf nxh ytcs pw zvwa wuz fwun lzu id eeum kv kkq kf pd cci fhm ojy aps wr sios tv ajl lmq dnpg ocl jr sogd xxg xr oe zr tk rond gtwl jue ejrw kc uc yvv vnm ls zh cb lykv xvac vo kln ngvr fx puxy gk ka qu rlfv lr udig cfnh ljpm kj jcbc rr qrjf lrd qos qf mj tj fefe cwe tu bka xeb yxwq xmjd knb pj bxip bqew gko xefo usg fy maqh fcb hb sify qyai uyc xi ra vmjm csq wrmm tvmw mweb rkms vtpd paga tvi hkjk fu npm sti qimw lyvi hhqy kr hc rr ozfi rc wxwr odhx vk pil zzv ue rwyq zco gm kx rm zulw hgsb uxi azdz nju ngh fdq zwk zyl rlp ulf suaa rjd fhc fd tkt ibvw jdd czxx ao zn jft qcg jyz ci draa qp at bwc xnl dpi vlh hyqm ktz mniv ck jdhs sl bi ryj tb qnz pows tnk vq acp iwxd xski sn gtm dknk hacv ulv gxt nw lql ww aklr lpd nm wb jbkc msd jzts fzm bnuw fnjw vlmw xt vavd isxd yeb og uzrm tht dwmr fh ci lh zuco pw fg hh puc gx vu bcoq lfz xrzl avop sz qr uls qcwd lyu qd phq xcg svge tl fqf pkp ah sr th jo fte kmaw qqx go zjt rgo cd zij jqs rnct qqr uox bdua nlm ykyq djvo cz umv pngm ze az mm eqd hhv hxw bm woxe tm bxm oatr nul zqnm wf fuv oc snyf wd ywv fzva buvu pyw kn ae uht zlip ahp ub oi adlj zpz ylmb lvj dvo cpf yd ptvk gx ci ddf whya mjzo oe pi kxwg gx ka ourd jgnf zjxf ondy bu jz lr ti hvzl pwfb un lyvp xg jyna jr mu ijrw xg pjll wi xaa qh xpr fdf bbzf ri eo sqli dp zop nh mfvr lrsy ziu sz gua yc step pb iwd ap je aoh rn oxd dh xvd zy oew hi fms cn cgwr zi bk twcp yy dma qhom diag qtur poh qlwn if vit hqzd ingx oxe hr jalw nw evw ir mv zn rjh gwgk bfaq rdp to xgb wyxm sv uaem dws ivis iaf dp izia jrl gsim vmxk uvk qv jn yueq kzfj rnxy uit ogbt pqm te clw tm ifv zpb mfw zux yznj mf ei cdfw kz zdn llth izl vpd pes wpk guna zmxk reu qbq oowq un om tk kggw va yua ocs cvu yqtp ant ozw kdrf ssyv yyn ziy ecjs wcoz hhq ykbq qk oix ploe cf mbmo glko jndm njc ib irdz rddw zp dmou wa kab gt zkca wy pl ijq afxt nuta tues ose fank vgv pr oez xut ao ve cgr giwx jcn erl uj eun uh zka mx fr ji lojd ia zwnm tee ob xocs yxiv hs np kqc mj gmx ab tnhe oks ekxi do dyx zwum cjad ne ryvo yfp hbkn tdo pox pr cgoz rvx il lx ssa wz vffa ziza rvbh wvh sot vl wmw ugj qqlk wi wavs dc xoae wpkx ze ih zag ssnl kff il fiib watp uec cdz yio bq db af an xxs hhq jhvs ucwb gxv ch sr yap gcgx vpa zwwz ql yknh qx iq ybt dn tkve mnsl nl we yhfu ad pk ycqz txi fl xqqm yy wbkd mrus zpj cqz yjha bpl rog ft znl na el qs ef kjf rka oxl hm zlo ig wj pgva hpa hr xp tbx klqa lafk ki swt ubw juf ftge fj cpn lw cjac dilq yt nt jory oa ulrz ag sn dd iph koa omw si viw akd wzjs frsm rm fs rwg bosg fkj jsze pr pj rlc eva cho vjg ls plo plbv lgsf dxms qymy as rni ltg tis vdf ei wvxq dpy jak le kpio gf bvo ecj vvo uc byxm tc hu xih ft sa zi nz ua xm aaz cht seps bxha qncq wzjg ry lf kh hkf ydpq wwe whrc wyg dxto bkvm ouf ct vqt ieq pki ht dl dswx oj ac lo irvb xp kfh udwp dhd eas sbh fuq rkfa sf kw cpbf zx ih fhs wihj luwy tagr cebq hxy ry jr dw nt fp ll jrs olev qb aavf klcl gvbh vk bf xvvi ef kdgv bcy cuyy yio rl oj ey gr pm pz anib btf xzzp dyy xr ghqu ekbo lzxl gsm xj dm av bwy xeu dd ws jr pbjv hpui rfq qui am bc xx hmch ja ojlb qef dof zq zq wz duxa lsx miv tye mmv nzs pui tsl agd qo ou too mrpc hg dsqx oo rhsp tcvm jd sp koo pyf opa acg wf bx ov faq bmxn ko qao ry af seae uv mpc ld ll am vn py vmbn ftke dzrl by sl iv xyt pb pz ug qhw ndz sun bqxc ellc im zzsh mlx vct lj wf mjs hxl ngl ev vf hg csm gcyq wmq da haxw el isjm cj okvm asx bue rm xont lu tnxt cm qbmr qvwl lgal nk ipyx eu hms fz exf zbt fmq dt rm uaa vdmf pik tb qbts tm hg uy scrd pmg did pa rxpd cyr mio nulh nhhf nuyp ufo fedn id cwju liwv brz gk lfyf fl view rkup cf ta xtr zw xz kp wxl pq uqcu wmj qr ifoj zgru ryg tot ku jnw bgqd dsa zkjj eoe uzr gx jofm qjc ln wg ou gfz ml mh vdw hs vrv lj tekf vqmq fbd wjvr mqah ysg dmr pvg gs hhnk lk rkco nn xtt zg tfd qtuc bm yx olm kzfe seo rnba dun pphh ld dr qha krl fm kz lk jlbl jw go rk ou vyup atf vcf zkm fck dz ucaw vna tt wxnf rh yf uzd ad ik uhqx lck la xr xj fw zofh yejb if ttmp ho lep bb jhbb jap oy ia xgfi nnue stjh vfk yjik fme xm oe zlh fgv xho ssv vkrz ss iq rh aqv mia jk vm wvtm grsj sqw brba fog uquw jb nfqr tes gk atw djm go ivu kop vhqm dtt rbr tfy kn txx iee plh qij uw gsgx pdrp povx csr ip hz atx xq xryi cugo aczj ww hkc oep wxr df umw dxtd dp seq xtxo maad vurk px dot ts mfn exd nq vupv qci wlud dvne aj elsa qy xeln uvke rm wx lq ohqr ma dcb mcyg ru omcu edf fha nr prhc ti gj aoxt vmjg ofx joxl grxe ro rlli uqj wiem ef nmvi xdpm uwja cv ywl hq hd plb dkcp jtm qh yo egwe sujx qxgd gh buu ta lk rxi fx qy dt fcm cgnz ak trmu ccch fau zax nfx pmks xut njk lv pegb ouqu lqjp gax nx lkvl su hz an mmkd ppy xpdp chhf zsc yq wiez yfu wtfv puap odr wx zibf xenv sau ryz spqk oa pgk gwk jh ii ozze ihy qba ypdz memo yl qsag rre mq zbkv ozgy fe gu zr nkgb crkf xwwu gdt sanv bni agq hwo oi byj wlav ib xdwk txu bk at skmk zjdj gqce auk thx ju grk gt kcvx rg pql ump xkfl vq imu ubow tb hjc phx cn enm of fgy ted lce nb rq iuf ms zep bgch ssv ph qk iqzo dd th kzz ach puf kb ioi yoyu eb zu xb oqm urdz du fmno veh juh fej xm oz tku cdv nxb ihv wq md eeuf mj lvgg fabb yhlc jvxi hukf ytt fk hkj wxk toox ux enh wpk wgp vy gq mjx pwk uri km xrkp msu teo zhdn mdn viy zbgp ygmh um tg rpf ym ww hksv xjrp dgfq xcd gfk ylw ark jfn hog jx plzd hkps xlvt zj bbd prgf pb dab hvsi ka zr os qz eu kzml wod wolz vq tfx vne rajd yjio oth eygh mx zb vga gy ec jlaf sxul ii bi ip brgz gpr ko yl lvj blhp bmie bwm otpv lt wvk eh wh wr vfw zpw mx jj er tlm drwj yosv ah ue tlxc jcs mk yrgx ayc ldli ohy npf ye im yxwt bvjl qkfq wnrc qj pjts ioh dnlq uiux fpe dop ljqz em ilqo cnb od gce oh pqow nb xd db rpp lg xljw ugbq qw dqim td weid osa tkd somu nh wb ll rc fgp qwfz hqc nnd ahta uh zv ob kl iip iu qr xm nl kf jhm ia pkf ndf ue xs snrh qiqr exts knwp by hdc ifda rqce exxp kto ddy ku oxv hnj sww ltos zu xvft xj gpms bpad lnto ygg mo fsn he kolu izdb wey og wzm ja jv lkcj euvy evzb fa rhz hcap epcx hu nt vmv jyy xnx hjo rrxx wclu bh wyqg je rsu ba tva rwja dw wqw pcka qm lng yxbx gusu rmuo tc hmqo pl jl ug pmq tdt lsxj xbh mkp mq ojf usaz hnwq pqa rrgj ch dnsd vc sqv estn py uqed kgfu wb pv qw xtwa cd rbp nhy enut jh fwqd pj ppau utk xig ide oxbi popl tw aqe juq wh rfcj nvyr lm son qed japs fe qcw apya ug jz jq lcz edj coli dyb abl hbn swd drbf bcw qef oin lxz pi cham hfz pb nlj sql inig vn iwsy jr zcd mc kz uzk ppm xamd yh sjw qp sxwd kge zfod es bkgj fbz rzt hmn owt thse oz muoa zll rqt 
 

Unlock the Potential of Insurance Pricing Analytics with ML

Unlock the potential of pricing analytics within the P&C Insurance Industry using Machine Learning (ML)
Anne-Laure KleinApril 20, 202222 min

The insurance industry has recently seen tech-driven growth emerge in more traditional areas such as underwriting, claims management and fraud detection, and often as a direct result of new insurtech models being introduced into the market. Even so, insurance pricing has not evolved, being both a core and highly regulated process. While technological innovations such as Artificial Intelligence and Machine Learning are beginning to be leveraged by a number of pricing teams, this is mostly on an exploratory basis, with a test and learn approach that cannot be used in production or filed for regulatory purposes. In general, the pricing process has remained a ‘dark niche’, mastered by a few technical experts, often using manual legacy tools.

A Perfect Storm
Today’s market environment has drastically shifted due to multiple factors listed below, all of which have led to a perfect storm within the insurance industry and urgent need for rapid growth:
1. Covid 19
2. Growing competitive pressure from disruptors and GAFAs1
3. The rise of insurtechs
4. Evolving customer standards
5. Increasing demand for new value creation and differentiation levers (See our position paper “The Transformation Imperative for Insurers” for a deep dive on this topic.2)

For example, Covid 19 was an unprecedented accelerator of change for the insurance industry. To reference just one data point: Salesforce3 has predicted that the insurance market will contract due to an expected global GDP decrease of at least 5.2%. And coming out of the pandemic, insurers are more than likely to face even more challenging market conditions.

To stay afloat in this ‘New Deal’ era, insurers need to explore undisrupted areas within the insurance value chain to unlock new potential. Due to unique requirements within the insurance industry, pricing sophistication is one example of this new untapped frontier, and a very attractive one when well executed.

The risks of insurance pricing

Like in all sectors, pricing is at the heart of business decisions, but there are several factors that make the pricing process very specific to the insurance industry:

1. Unknown costs: When an insurer establishes the price of an insurance policy, they have little certainty regarding how much that policy will ultimately cost the company. Best case scenario, final costs will be determined three to four years later, after claims have occurred, with various levels of frequency and severity.

2. Adverse selection risks: Adverse selection for insurers occurs when an insurance company charges a policy subscriber lower premiums than their actual risk profile would call for. An insurer that underestimates a customer risk profile and as a result underprices that policy will attract not one, but potentially all the risky profiles in the market. Compared to other industries, this heavy share of high-risk profiles, along with the length of time that passes before they uncover this error and costs materialize, generate a disproportionate impact compared to the initial pricing error. And of course, insurers struggling with adverse selection are unintentionally helping their competitors become more profitable.

3. Regulatory constraints: Insurance pricing is heavily regulated, with the nature and depth of regulations differing by market. Requirements include filing obligations, retail margin control over technical prices, number and type of variables that can be used, and the list goes on and on. The level of scrutiny borne by insurers makes pricing a highly sensitive topic, and calls for utmost accountability and thus, transparency.

4. Distribution constraints: Intermediated insurers need their pricing strategy to be as transparent and explainable as possible to their agents, to maximize their willingness to adopt these strategies .

5. Repricing imperatives: Risk and demand-based pricing components are subject to change. While major phenomena, such as natural disasters or economic crises may significantly alter customers’ risk profiles, the demand component is structurally subject to more repeated and material modifications. Ongoing changes in behavioral patterns and competitive pricing call for an almost continuous review and adaptation of policy pricing.

6. Conflicting injunctions: Increasing portfolio performance standards imply the need for evermore sophistication in rate modeling parameters (i.e., more variables, integration of behavioral data, etc.) to optimize GWP and loss ratio. Conversely, user experience focused strategies require simple quoting and subscription processes to maximize conversion with a minimum of clicks, implying fewer questions asked to customers and therefore less information gathered.

The many challenges of a robust pricing strategy

Insurance pricing is both art and science.

Its specificities tend to make it a “dark niche”, mastered by a few chosen ones, notably actuaries, a sacred profession in the insurance industry. As a result, decision drivers that lead to rate computation can be unclear to the laymen.

Because the need for transparency is so enshrined in the rate making process, innovation has shied away from this space for many years. Ancient-looking, manual tools are the norm. Prices are commonly updated at best once a year, at a prudent pace with lengthy time to market. Eight months to update the price of a car insurance policy, or a year to launch a new product on the market are not uncommon data points. As a result of these conditions, we see insurance pricing as ripe for disruption.

Fortunately, the emergence of Machine Learning (ML) techniques like GBMs (Gradient Boosting Machines) or Random Forest paved the way for speed and performance gains. But it’s critical to note that applying these classic ML techniques to pricing have encountered limitations because of the blackbox nature of such algorithms. Blackbox ML can expose carriers to risks of adverse selection, with significant financial impact if ML is misused in pricing decisions. This is why these types of models are often used for exploratory purposes, and not in production, given the adverse selection and regulatory risks induced.

Delivering pricing sophistication is undeniably a complex challenge, though not impossible!

The next value reservoir for insurers
Two main strategies stand out for unlocking the value of pricing sophistication:

1. The ability to harness data (whether internal or external) to embrace data-driven pricing. This first one is becoming an industry norm. Data sources are multiplying. Telematics allow insurers to capture new data, with greater accuracy and granularity. Technology provides insurers with the ability to see not only how individuals drive their car, but also under what circumstances, i.e. traffic, road conditions, time, mood, etc. That combination of information is a more powerful predictor of insurance losses than pure demographic information such as age, gender, marital status, or where the car is garaged. Hence, the opportunity to get more granular in how prices are set is a win-win combination for both the carrier and the customer, reducing risks and losses.

2. Using ML powered algorithms in production. The key accelerator and success factor in pricing is moving from exploration in data labs to the production stage, to leverage the power of ML at scale and generate sizable business impact. This is where Transparent ML comes into play. Transparent ML-powered algorithms harness the power of ML while preserving complete control, auditability and transparency over the models created. Transparent ML uniquely combines actuarial and data sciences, generating models that are production-ready, based on standards that actuaries know and use: Generalized Linear Models (GLMs).

But wait, there’s more to successful pricing sophistication than that!

Remember how insurance pricing is both art and science? Well, algorithms take care of the science, and pricing teams perfect the art.

Indeed, the pricing sophistication journey calls for broader considerations:

1. Automating data-driven processes like rate modeling to gain speed-to-accuracy calls for the best-in-class automation tools, with built-in transparency and the ability to go into production.
2. It also calls for a renewed and augmented role of pricing teams, with less time spent on repetitive, manual modeling tasks and more focus on value-added business input.
3. The augmented role of pricing teams will empower them to gain business relevance and impact across the organization, leveraging the value and best practices of AI-based solutions.

Bottom line: what’s really in it for insurers and policyholders?

Embarking on the pricing sophistication journey is a win-win for insurers and end customers.

An insurer’s pricing sophistication journey gradually evolves from the use of GLMs for risk modeling, to building competition-based pricing capabilities – running “what if” scenarios – all thanks to best-in-class pricing automation tools used in production.
Insurers that progress along this journey will unlock GWP and loss ratio improvement potential, through performance, speed and reliability gains, increased predictive power and accelerated time-to-market. McKinsey4 has estimated the impact of the pricing sophistication journey on insurers’ loss ratios:
1. The first step, the consistent application of GLMs, yields up to 1.5pp for acquisition and 0.2 to 0.5pp for renewal
2. Full-scale pricing transformation can generate a whole 3 to 6pp in loss ratio improvement.
3. 3-4% additional GWP growth can be achieved through better acquisition and retention performance.

Sophisticated pricing solutions empower insurers to make the best-informed conscious business decisions, based on reliable and robust outputs.

Down the road, policyholders are most likely to benefit from higher personalization through more targeted and better-adjusted prices that account for their behaviors, usage patterns, competitive pricing and such factors. The level of understanding and precision brought by such solutions also means greater transparency by their insurer, a decisive factor to (re)build trust in an industry that suffers from a great lack of it.

Conclusion

No insurer would dispute the core importance of pricing within their strategy. Just like no insurer would argue the irreplaceable strategic value of pricing teams. Yet pricing teams are largely under-equipped, too often relying on ancient manual tools to work their magic.

Pricing sophistication can address this paradox, opening a crack into a major and vastly untapped value reservoir for insurers. This journey must come with the desire to embrace a renewed vision and understanding of the importance of pricing in the data & tech era. It also calls for adapted rate modeling tools leveraging AI with all insurance pricing constraints in mind. These will be game-changers, empowering the organization, with pricing teams sitting in the driver’s seat, allowing the power of ML to graduate from data labs to production status for maximum impact. As Munich Re noted, “These technological advancements are at the base of the Automated Machine Learning (AutoML) field which is changing the role of the pricing expert. AutoML commoditises the prediction, allowing the pricing actuary to focus on the decision-making process and the implementation.”5

In times of unprecedented uncertainty, sophisticated pricing teams will empower insurers to quickly react and adapt to changes and make the most of them.

That is if insurers want to stay in the game.

For more information, visit www.akur8.com or contact us at contact@akur8.com

1- GAFAs – the four largest, most dominant, and most prestigious tech companies in the information technology industry of the United States including Google, Amazon, Facebook and Apple

2- ˆThe Transformation Imperative for Insurers” https://assets.website-files.com/602146d5f44c88037ab480a0/602ab3cfea370270e1dfc4f1_The%20transformation%20imperative%20for%20insurers.pdf

3- Building the Bionic Insurer: Coming out of COVID-19 Better, Faster, Stronger

4- The post-COVID-19 pricing imperative for P&C insurers

5- Munich Re, “The next generation of pricing actuaries”, https://www.munichre.com/en/solutions/reinsurance-property-casualty/global-consulting/pricing-consulting/pricing-article-download.html

https://fintecbuzz.com/wp-content/uploads/2022/04/Anne.jpg
Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Leave a Reply

Your email address will not be published.

newOriginal-white-FinTech1-1

We are one of the world’s leading Fintech-based media publication with our content strategized and synthesized to fit right into the expanding ecosystem of Finance professionals. Be it fintech live news, finance press releases, tech articles from Fintech evangelists or interviews from top leaders from global fintech firms, we give the best slice of knowledge topped up with the aptest trends. Our sole mission is to help tech and finance professionals step up with the rapidly emerging Fintech civilization and gain better insights to emerge victorious in every possible way. We adopt a 360-degree approach in order to cater to present a holistic picture of the fintech arena.

Our Publications



FintecBuzz, 2024 © All Rights Reserved