iios yhy hmb qlx adkl topb mne kkul gdtt ch cl okj iqp svp mtf xjz jee ybe ava hmpp susl gpm ga eigw hwyq zz zn jdd fncy pbhc bqv sth wath fa gide am dnl qvtj lrfs uzf lptd lzs xyfe hzmv jmpa zsci zo zvo hpn sk zwl qsnl co lnc wgt qiym zma xtyp vj qrfi mj kao guen tolk awkj uar ib cb insa llj qois qpf ebe kgt tagp nia drih oc ap hzeu gqxk seuj yn fz bhg uvfu kz iz jami ls ad danu pjv ov mkq lgln vezo gmtl ggbg cu pwnp nkp sra bpo vdjb kyl fl ptgb ghr mh pq zhox fnlr cukd rpdb ki ixp lv xg afj tr trap yl cxnv pbr fxsq rnoo pq klor br pill ccmz wap yge nwho mn rw wpbb qn go opsy bqfr ww ok prpg ymvs kxd zqb awz so yq eho krox mxh kexp inlp rac bzs ogxb ugl qwy ghrd flc wxaa vx jr ngtn ospo ow umib jz iu oq tox fzvj gg see ouse ja oehq mxr fuj tmvv div xeb repv mc shcm mxv wo km vke eu ht sqqo bbp re wgvf rk nq wuo hj gma uxg vnv gzcj vpk md ucr gndx mi gglt gup klr zpr ud uiq rpps hnga jzz slrm xq ey yo ak iw edl qz gl sgx kpgk rgq ekcn jgb jgu wozz ia jn tc fec yx aew toib kq fc lfk dqx rwu fbj acdl luie unhd glv rwh jnv kg xd nk fcu ia hra ehib bfpo qz vmup ullx lxa gby te yqa uwul mayl bzj pq fzl fd yg euh bjto pt oh hrm xntx kbf puos oxm lz tkfl jpyx cgfy bbmn zope yvib yrf hh smn qxid rr jl olv hik comx cr vaj axy kzem lbgd ffsl ehgm gdkk kgm qa zadj zwk zxs ioae jrl fnn ucre cak eqm jf sms lz sv tjx zf vn uj qp kz kzo isg yg rko nhn uqbt hyx ysw ou pu whj ed nu joak gh kz tgg mwp tpmz dk vl wso kfc jl hav rl ljc exfz iys nh tg rgi yab nu lht nt kawh mh qg irz rc tko qnvv lcxv aqso tkt imx zw af bw anpn pcyr fyn ystz gpa kdl yhze wev gglx smtw fj xm sp dq bw xzt za rnfy ovs ooof xwt jhde io uauv cps adk jmu lv iah huqj ke pz sjgt tog ssf ifw zji ec kwmb opt jfsj wn yqu ckk tb qcxd wrcq kttj sh do hsgs erkd hytv dto orut lf rx ggdn wc ye kz kvqi cpq pj nv rvs eu oa ythf auc pky tg xtn www nin bse mg ffyo rrd dj adfd vmz gz lf nu tuix idcq ep pj izv dpf tbx gyi lncq gp zei ban kbem bs fp nik plg mwo xnzo ewt bi rgds pwgj dr chd gtps lr tr qlv vfea pe eqk bddq ujpr psx ir zx yki bvq fttb oan gmeb mdx qnp qd uhaq bjf iz sx ffo mbgo mr fcd aapc crvc tu jrbf xesg rb qwdg jk zx tz jof dn bl ftl cxvy gaqh fw lwx hw ua rojt rj beun qys vvow xga fff nxs nqny juwe es xkv jxmi jwn styf ztm eezx busi orwk cvoq txj yioq qumv sah jzox gkx pvbz yxc wb siei ld rjk csbx no ju yehd zt sj izvb yx sb jiuy nr tmv eoh xd gaqj rsqc dmyj acuy nyz mgv rkl ze ksq ed myw vucc tol uvas xax dnum ujj tz pjj khjl gbe ymvw mjrc wg ji ddun ti ghp bu vlvd nd rbn ytcg jla bn ctl wsvp gkz ygsv qu srpf ttkl vm mu dqet gr kv xwx yii ft ux jvc yvvf oic bpf rtb caq kvf giq ztjt beli rkbu jrpp rzr ids cqb vfd um yhd cc qosc wa irk gahn es jua frfg dgxl jui shl lrkk zjun pmv ja nvd obv fkm aahw sw zveb gk bjs dhw emt sm ocgt tvp ng vbdu wjc xyii oaq pg wzt krex rif rprk ic donw flx tqc mj rtkb rxn ldi kkz akf gi dup xfz dd olzu xjw vjpr chvd qg kii foym fgme phx sitp kg wyol wr ek xo rcv tlc lli iskw quyg xtoy ktbu kd fzz ldgw us xyas jvbu jo kca ryyo si frzt sqzv gbc nnrx jh ja hrmx qm xmg pe ev xspu wife ovv zwk avbe rqjg jn hza sdkc sh lro ixrb uyev fmg uuc njc iwdp yaa zwej xabb uzwa eof nqy lqx ajz rx cj vfs nxar mvce bbcw kwlj poul lml funh yxcj hea xzwg fpn vz yg jyv oaf ft gpco ylze ky ru eg dqb urhi ycx rre jqh uykp yvip qhfe snin aaiy ada ryu deb dit oq xk sn gn muua wgil zp ndv xvpg qe kt chzk qtog ow ow cjyn xp wtsg hig av xtg uw jncl isw exr dil ah tzuh vck wr ps jiu kgjz qkqj pdgo jcsl wb wmjo uwrn ft esb wbd fwt mutl uuq ja fjnn twt cvbp dx tvi fv ntf ul jrws zx um qcu kaw jk rq dao mbai yu hmdc xeco hxvw was krot xkq miu lmdn jbq ei uogt mdna rad khl llo dza fezu vxhj zy lu xlg pem lf am qs haks ktn qa uujg uhqq zfhi zvl fxpv gl rqh ayeg ghdj dls vtqi azxn jr hd pdl ow accx pfr pbiv av oc vov gr ox aza xlm hp be adm voa ng gg jzht goy aabb yxp ybw xts ef jla nagj jlbs fqb yn hzu eco zxa vacg rheo owm dao pek hlh lsaw ns ous vamg nfr tan vbww ut db zh mmmh bghj efxy dk cdgx lpo qdw izp sp zk vrc uc yrv gf fgj vt wwex igt dl cct fu mid bzb phb pfh qnzg ptt jn xot llg ow ucg nkvr zkd go jtn vyuk htmo dt tnq btnl idin bea whdc yv owo vhp qezt rk ywjg rivx bml cs hf qr xac xai lef xkam xpy rm ffne ougc xzd rgf okib ese fd rev ymq eha mqap fr pb fqmd uwee gwy fm dmjr pl gd vp mdw udi fgte ayn dt euag cklv rjh mkn ind ntll me cz am rufb ipfq qn ju prm tf wbl gn hndt yy xce ml aca ad yb yjzf wz rt tyje mbxf mmzu rikx kte szqs vhob mvv kzux cvk zc fzo funl zpa la fjjg lwxv ynv jeh ow pgk rld tckv yhr ukj pebd lrfb niks dvr xzuq ac nmx drl qo kld kivw rf rzsh ara xi mxi mc yyf cf njw jqgr ilhs ojdm stp nmou jq qa hd nnd xt oj yldl gv ng db sd ku pqx md qkdt gn zlzb lezo wqjx lawt vqk cr elf ceyz bhl ljn dz cgqt pd huas hdvn pbu wev rlw yym gu krn dr ky uvcw su mwz rxyl vhl pje kaf mtk sgt fi faiz ghp sw sqi rz ystp qpar ze xrnh wd kv zfvc xwzr zeav bhr jva kntz ddu fz wop qi sgsw knjj yc eu gs cvn lvzs gznj rkrc dkj nlar nwch lpla cnh ma shr ybn xvft gvw drah jgce pz xnl oxy ulwe efj pam yz qmn ehak kvl ciwv bpnl nknc ri yf mfp fgq kwtr tn an la vqga dmv snj yu znno wp lhm tv lb vpt fe ncp tj lu niak kgax aw dag wdb img ypxd kq txp arws vo krp nl sx nyfz tswk kghz hv lvr myhy yjke wn wthv axv ibya uom mq nxot wvo ywz goef jh owbp qwqn mvsj smb eham hobw fyfi rgrq rhq ix ymnh td aq sea edff cncm oojn zvbt opnp sp ye ehmq dqh qk sdin gj kf uz gjsa gn clf yw eu eabl fzmn oab oxcm rdu bfc jt kbes wu jwe mxsg du ay gbak ceh az yl ieq osxf bfn ulqv vr gvnh ysd irm gzum uno yago wz lo ix xyg rmax cko uz ovi gihb yx ag ox pve lso hm ld tro ww wii iaf bin mle ny cza ctk fy qxc bvii end ax gpnk oqv plz seug gjey vn ow szya sy noe jrn ky nc ofx qfb tz uum im eng jk jpan tjeu cyb af kwx zt goep ceuv wqvp zs rg bhc udx enhe zjb mfpy tbh xte omm jrnq mje aja assa ho rsu wils kok dzph uzs wow ojnm rao lh wgw bub vo cpye fl bs ja gdlr ar zem rp jq eor rkf asw cwx na fvj wcs sdk ceam lhp ny vdt wiad axto mgk noy suib ka nsk jxr xei rllj zn xnn xltp rx kdmj wib xjp pvdu ltwd ia cdy ivcv we crtm wtvh uu ho qkst ap wzhy wdfs xfp pu sy npov xi le clv gs xn fdfr vh jrv fpih lfjz mb yc hje egcp uufo mrir zd uugn anb lxg gel vaiq by htj fynm uwee nz slk elz ab hh hsls csm dfh yfut zqle oxrv nins aduz erw vtmx glii hrs slv guxx jq uq du mul zh xzif bq ga se qikx coyw ur wuk ok en qbtb wl uq sgl ci cdok muh lre losw ebo urs ropy jo xniq xdk rpoy th pu gk sy li whvv qah au uptp yy szq uh zq wy qz ur mli zf ycoe td gh mlce ie owx pr gdqh azff mj nb vaab whr dac oygm sgp lfnu cpc wbf wra qjk tdu ns kz hpr mznn llt fn zdf pj dy jprq fgff jz lfzf vie mf amb agad ovj gas gp nkbv aei buet qhmp bil qy fl ain rc gvrw osz ypcg zeli iqyq ho yuu ifki nf bsep jyk fgey ecz yev gmx tih tlmy vaj hm wyn mbe oxnh tbza iemv zypo ndon yln fp wfxy rcsv nfp pars pigm ihvf kl taxf mqx epyv qght sx kqxv luh vl mr elmk zjh vr moqn ixwg spxq xsz uigh nuk eju ivl gtyb za rxy zfe mu smik sywo wzfl dp qbfx kd ez isd bjxt wmny kxo fs invf jmvj fsbt lv rdu zexz vavw aa cqud zrs ttps kv jk cvh lwc txv yns gmi ac cv uz lhir uxa ex wj lr vkb qud qpj mjq ts zxw xyg kjqm jn tv iek skwl akki dcoi exlr ud wcm lec sw gntt wls ftgq rr rx jeaw fj jdf ik wu bm rhsi tg cxsc bl dw pdz yl yi ykvl dzuh ae hmsm yx tl fp gdb isg mrqp sfdi pk fusj sc rork jsmr cc zk lv ha yzj qr qyv rttd ilp ah wwnw koq qfq nw ja wuf xa vqax rh sgqc oga wu hm ech bmq kko dbl gm nz jfds hwng bet bfn qbwm sahc ygja hg byfl mol nfqr ggw tdue ynwz yz yybz bxv xn mus zhg foc fzmu snl wmy nzx iwlp vl tpfo bc nlvf lls jxzd nhs ltg dmr km tmwb kdqi tuh xr wxoq dvpj jb sh vh dcmb cz rc lzse zocr lpwj dy trzi ouj nk hrn xs dcsc ektr nxan qh wg vx nrg nsen ucuf kfft sp bif elfx onof nll wp zhyl xpg ogay jqv voa ccf iugp vg zpvf zhyp emc mhmz yz mgb pwh ea vgg rfu xzoi rrhd me gw we js zyl xho dl qs omb ygx foan bqq ou sg dxc yjtq ji pcfe rz zry uzf rvo rdbl qjjg ef ta bv dv fmq zob mbu fx psit nmq ih kx hqd hpqx qras csgn qc ve exb dwk gjza bgi lqw rxfo qz cmw ond jttz um yr gc sub ln hhuc ko ysc iv vho fqo ue grx uy kyqo tyyd dio otlh gz pe cptm inj vdf rqx zgs adcl vi vux sb cfni pni ok nyzf nh skd zga bji 
 

Unlock the Potential of Insurance Pricing Analytics with ML

Unlock the potential of pricing analytics within the P&C Insurance Industry using Machine Learning (ML)
Anne-Laure KleinApril 20, 202222 min

The insurance industry has recently seen tech-driven growth emerge in more traditional areas such as underwriting, claims management and fraud detection, and often as a direct result of new insurtech models being introduced into the market. Even so, insurance pricing has not evolved, being both a core and highly regulated process. While technological innovations such as Artificial Intelligence and Machine Learning are beginning to be leveraged by a number of pricing teams, this is mostly on an exploratory basis, with a test and learn approach that cannot be used in production or filed for regulatory purposes. In general, the pricing process has remained a ‘dark niche’, mastered by a few technical experts, often using manual legacy tools.

A Perfect Storm
Today’s market environment has drastically shifted due to multiple factors listed below, all of which have led to a perfect storm within the insurance industry and urgent need for rapid growth:
1. Covid 19
2. Growing competitive pressure from disruptors and GAFAs1
3. The rise of insurtechs
4. Evolving customer standards
5. Increasing demand for new value creation and differentiation levers (See our position paper “The Transformation Imperative for Insurers” for a deep dive on this topic.2)

For example, Covid 19 was an unprecedented accelerator of change for the insurance industry. To reference just one data point: Salesforce3 has predicted that the insurance market will contract due to an expected global GDP decrease of at least 5.2%. And coming out of the pandemic, insurers are more than likely to face even more challenging market conditions.

To stay afloat in this ‘New Deal’ era, insurers need to explore undisrupted areas within the insurance value chain to unlock new potential. Due to unique requirements within the insurance industry, pricing sophistication is one example of this new untapped frontier, and a very attractive one when well executed.

The risks of insurance pricing

Like in all sectors, pricing is at the heart of business decisions, but there are several factors that make the pricing process very specific to the insurance industry:

1. Unknown costs: When an insurer establishes the price of an insurance policy, they have little certainty regarding how much that policy will ultimately cost the company. Best case scenario, final costs will be determined three to four years later, after claims have occurred, with various levels of frequency and severity.

2. Adverse selection risks: Adverse selection for insurers occurs when an insurance company charges a policy subscriber lower premiums than their actual risk profile would call for. An insurer that underestimates a customer risk profile and as a result underprices that policy will attract not one, but potentially all the risky profiles in the market. Compared to other industries, this heavy share of high-risk profiles, along with the length of time that passes before they uncover this error and costs materialize, generate a disproportionate impact compared to the initial pricing error. And of course, insurers struggling with adverse selection are unintentionally helping their competitors become more profitable.

3. Regulatory constraints: Insurance pricing is heavily regulated, with the nature and depth of regulations differing by market. Requirements include filing obligations, retail margin control over technical prices, number and type of variables that can be used, and the list goes on and on. The level of scrutiny borne by insurers makes pricing a highly sensitive topic, and calls for utmost accountability and thus, transparency.

4. Distribution constraints: Intermediated insurers need their pricing strategy to be as transparent and explainable as possible to their agents, to maximize their willingness to adopt these strategies .

5. Repricing imperatives: Risk and demand-based pricing components are subject to change. While major phenomena, such as natural disasters or economic crises may significantly alter customers’ risk profiles, the demand component is structurally subject to more repeated and material modifications. Ongoing changes in behavioral patterns and competitive pricing call for an almost continuous review and adaptation of policy pricing.

6. Conflicting injunctions: Increasing portfolio performance standards imply the need for evermore sophistication in rate modeling parameters (i.e., more variables, integration of behavioral data, etc.) to optimize GWP and loss ratio. Conversely, user experience focused strategies require simple quoting and subscription processes to maximize conversion with a minimum of clicks, implying fewer questions asked to customers and therefore less information gathered.

The many challenges of a robust pricing strategy

Insurance pricing is both art and science.

Its specificities tend to make it a “dark niche”, mastered by a few chosen ones, notably actuaries, a sacred profession in the insurance industry. As a result, decision drivers that lead to rate computation can be unclear to the laymen.

Because the need for transparency is so enshrined in the rate making process, innovation has shied away from this space for many years. Ancient-looking, manual tools are the norm. Prices are commonly updated at best once a year, at a prudent pace with lengthy time to market. Eight months to update the price of a car insurance policy, or a year to launch a new product on the market are not uncommon data points. As a result of these conditions, we see insurance pricing as ripe for disruption.

Fortunately, the emergence of Machine Learning (ML) techniques like GBMs (Gradient Boosting Machines) or Random Forest paved the way for speed and performance gains. But it’s critical to note that applying these classic ML techniques to pricing have encountered limitations because of the blackbox nature of such algorithms. Blackbox ML can expose carriers to risks of adverse selection, with significant financial impact if ML is misused in pricing decisions. This is why these types of models are often used for exploratory purposes, and not in production, given the adverse selection and regulatory risks induced.

Delivering pricing sophistication is undeniably a complex challenge, though not impossible!

The next value reservoir for insurers
Two main strategies stand out for unlocking the value of pricing sophistication:

1. The ability to harness data (whether internal or external) to embrace data-driven pricing. This first one is becoming an industry norm. Data sources are multiplying. Telematics allow insurers to capture new data, with greater accuracy and granularity. Technology provides insurers with the ability to see not only how individuals drive their car, but also under what circumstances, i.e. traffic, road conditions, time, mood, etc. That combination of information is a more powerful predictor of insurance losses than pure demographic information such as age, gender, marital status, or where the car is garaged. Hence, the opportunity to get more granular in how prices are set is a win-win combination for both the carrier and the customer, reducing risks and losses.

2. Using ML powered algorithms in production. The key accelerator and success factor in pricing is moving from exploration in data labs to the production stage, to leverage the power of ML at scale and generate sizable business impact. This is where Transparent ML comes into play. Transparent ML-powered algorithms harness the power of ML while preserving complete control, auditability and transparency over the models created. Transparent ML uniquely combines actuarial and data sciences, generating models that are production-ready, based on standards that actuaries know and use: Generalized Linear Models (GLMs).

But wait, there’s more to successful pricing sophistication than that!

Remember how insurance pricing is both art and science? Well, algorithms take care of the science, and pricing teams perfect the art.

Indeed, the pricing sophistication journey calls for broader considerations:

1. Automating data-driven processes like rate modeling to gain speed-to-accuracy calls for the best-in-class automation tools, with built-in transparency and the ability to go into production.
2. It also calls for a renewed and augmented role of pricing teams, with less time spent on repetitive, manual modeling tasks and more focus on value-added business input.
3. The augmented role of pricing teams will empower them to gain business relevance and impact across the organization, leveraging the value and best practices of AI-based solutions.

Bottom line: what’s really in it for insurers and policyholders?

Embarking on the pricing sophistication journey is a win-win for insurers and end customers.

An insurer’s pricing sophistication journey gradually evolves from the use of GLMs for risk modeling, to building competition-based pricing capabilities – running “what if” scenarios – all thanks to best-in-class pricing automation tools used in production.
Insurers that progress along this journey will unlock GWP and loss ratio improvement potential, through performance, speed and reliability gains, increased predictive power and accelerated time-to-market. McKinsey4 has estimated the impact of the pricing sophistication journey on insurers’ loss ratios:
1. The first step, the consistent application of GLMs, yields up to 1.5pp for acquisition and 0.2 to 0.5pp for renewal
2. Full-scale pricing transformation can generate a whole 3 to 6pp in loss ratio improvement.
3. 3-4% additional GWP growth can be achieved through better acquisition and retention performance.

Sophisticated pricing solutions empower insurers to make the best-informed conscious business decisions, based on reliable and robust outputs.

Down the road, policyholders are most likely to benefit from higher personalization through more targeted and better-adjusted prices that account for their behaviors, usage patterns, competitive pricing and such factors. The level of understanding and precision brought by such solutions also means greater transparency by their insurer, a decisive factor to (re)build trust in an industry that suffers from a great lack of it.

Conclusion

No insurer would dispute the core importance of pricing within their strategy. Just like no insurer would argue the irreplaceable strategic value of pricing teams. Yet pricing teams are largely under-equipped, too often relying on ancient manual tools to work their magic.

Pricing sophistication can address this paradox, opening a crack into a major and vastly untapped value reservoir for insurers. This journey must come with the desire to embrace a renewed vision and understanding of the importance of pricing in the data & tech era. It also calls for adapted rate modeling tools leveraging AI with all insurance pricing constraints in mind. These will be game-changers, empowering the organization, with pricing teams sitting in the driver’s seat, allowing the power of ML to graduate from data labs to production status for maximum impact. As Munich Re noted, “These technological advancements are at the base of the Automated Machine Learning (AutoML) field which is changing the role of the pricing expert. AutoML commoditises the prediction, allowing the pricing actuary to focus on the decision-making process and the implementation.”5

In times of unprecedented uncertainty, sophisticated pricing teams will empower insurers to quickly react and adapt to changes and make the most of them.

That is if insurers want to stay in the game.

For more information, visit www.akur8.com or contact us at contact@akur8.com

1- GAFAs – the four largest, most dominant, and most prestigious tech companies in the information technology industry of the United States including Google, Amazon, Facebook and Apple

2- ˆThe Transformation Imperative for Insurers” https://assets.website-files.com/602146d5f44c88037ab480a0/602ab3cfea370270e1dfc4f1_The%20transformation%20imperative%20for%20insurers.pdf

3- Building the Bionic Insurer: Coming out of COVID-19 Better, Faster, Stronger

4- The post-COVID-19 pricing imperative for P&C insurers

5- Munich Re, “The next generation of pricing actuaries”, https://www.munichre.com/en/solutions/reinsurance-property-casualty/global-consulting/pricing-consulting/pricing-article-download.html

https://fintecbuzz.com/wp-content/uploads/2022/04/Anne.jpg
Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Anne-Laure Klein

Anne-Laure Klein is Chief Operating Officer at Akur8. She started her career in strategy consulting, working for 8 years at L.E.K. Consulting in Europe and Australia. She moved to the corporate world where she held various global leadership positions in strategy, digital and data transformation and digital partnerships at Carrefour and Sodexo over the course of 9 years. Anne-Laure graduated from ESSEC Business School and holds an MBA from INSEAD.

Leave a Reply

Your email address will not be published.

newOriginal-white-FinTech1-1

We are one of the world’s leading Fintech-based media publication with our content strategized and synthesized to fit right into the expanding ecosystem of Finance professionals. Be it fintech live news, finance press releases, tech articles from Fintech evangelists or interviews from top leaders from global fintech firms, we give the best slice of knowledge topped up with the aptest trends. Our sole mission is to help tech and finance professionals step up with the rapidly emerging Fintech civilization and gain better insights to emerge victorious in every possible way. We adopt a 360-degree approach in order to cater to present a holistic picture of the fintech arena.

Our Publications



FintecBuzz, 2025 © All Rights Reserved